奇函数和偶函数的定义?
奇函数和偶函数的不同奇函数:
关于原点对称,对于互为相反数的自变量,其函数值也互为相反数。自变量a,-a,该自变量互为相反数即:a+(-a)=0,其对应的函数值f(a),f(-a),也互为相反数,即:f(a)+f(-a)=0,或写成f(a)=-f(-a);具体数字例子:f(3)+f(-3)=0。
偶函数:关于Y轴对称,对于互为相反数的自变量,其函数值不变。如自变量a,-a,该自变量互为相反数即:a+(-a)=0,其对应的函数值f(a),f(-a)相等,即:f(a)=f(-a),具体数字例子:f(3)=f(-3)。
相同:定义域都必须关于原点对称,如定义域:(-5,5),或(-10,-1)∪(1,10)等等都是关于0对称的,如果定义域为(-1,8)或(2,9)等不关于原点对称,无论函数怎样均不是奇偶函数。
如何快速分辨函数奇偶性?
函数的奇偶性快速判断的方法如下:
(1)定义法 用定义来判断函数奇偶性,是主要方法。首先求出函数的定义域,观察验证是否关于原 点对称。其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定 f(x)的奇偶性。
(2)用必要条件 具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。 例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所以这个函数不 具有奇偶性。
(3)用对称性 若f(x)的图象关于原点对称,则f(x)是奇函数。 若f(x)的图象关于y轴对称,则f(x)是偶函数。
(4)用函数运算 如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)?g(x)是 偶函数。简单地,“奇+奇=奇,奇×奇=偶”。 类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”。
函数奇偶性运算:
⑴两个偶函数相加所得的和为偶函数。
⑵两个奇函数相加所得的和为奇函数。
⑶两个偶函数相乘所得的积为偶函数。
⑷两个奇函数相乘所得的积为偶函数。
⑸一个偶函数与一个奇函数相乘所得的积为奇函数。
奇函数减偶函数是什么函数
奇函数加减偶函数,是不确定的,无确定公式。如假设奇函数为f(x),满足f(-x)=-f(x),偶函数为g(x),满足g(-x)=g(x),那么F(x)=f(x)-g(x)F(-x)=f(-x)-g(-x)=-f(x)-g(x),奇函数减偶函数为非奇非偶函数。
奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
如果对于函数f(x)的定义域内任意的一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数。
偶函数加奇函数是什么函数
偶函数加奇函数是非奇非偶函数
已知f(x)为奇函数,g(x)为偶函数,且两者的定义域相同,判断f(x)+g(x)的奇偶性。
解:由题意知f(x)=–f(–x),g(x)=g(–x),令h(x)=f(x)+g(x),则h(x)的定义域关于原点对称。
h(–x)=f(–x)+g(–x),而h(x)不等于h(–x),–h(–x)=–f(–x)–g(–x),即h(x)不等于–h(–x),因此h(x)为非奇非偶函数。
举例说明:f(x)=x,g(x)=x的平方,h(x)=x+x的平方,h(–x)=–x+x的平方,可以看出h(x)为非奇非偶函数。
奇函数的导数是什么函数
可导的奇函数的导函数是偶函数;同样,可导的偶函数的导函数是奇函数.f(-x)(-1)=f(x)此处用复合函数求导法则因为[f(-x)]=f(-x)(-x),而[f(x)]=f(x)于是f(-x)=f(x)两边求导得f(-x)(-x)=f(x)。
奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。
偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能倒导其奇偶性。验证奇偶性的’前提要求函数的定义域必须关于原点对称。
怎么判断奇函数和偶函数
按定义来说:对于函数f(x)的定义域内任意一个x,都满足f(x)=f(-x)。所以,一般来说判断一个函数是奇函数还是偶函数必须要将定义域中的的所有数带入,这肯定不可能的。
那么我们可以先看看定义域,奇偶函数的定义域必须是对称的,一个函数的定义域若不是对称的,那么就不用判断了,肯定不是.这个基本一看就能看出。
定义域对称,这时候要判断奇偶性,首先是利用公式,若能推出f(x)=f(-x)或者f(x)=-f(-x),那么就可以判定了.所以若是有表达式,一般是将-x带入。
还有可以看图像,看图象是否关于原点对称(此为奇函数)或关于y轴对称(此为偶函数)。
若以上两种都没有判断出奇偶,一般就很可能是非奇非偶函数了.不过考虑有的函数表达式复杂,f(x)=f(-x)或者f(x)=-f(-x)难以推断,我们也可以将之分解,化成几个函数相加减或乘除的形式,然后根据各自的奇偶性再判断.当然这时要记住奇函数、偶函数相加减或乘除之后的奇偶变化。
奇函数加减偶函数是什么函数
奇函数加减偶函数是非奇非偶函数。设f(x)为偶函数,g(x)是奇函数令f(x)=f(x)+g(x)F(-x)=f(-x)+g(-x)=f(x)-g(x)≠f(x)+g(x)=F(x)也≠-[f(x)+g(x)]=-F(x),即非奇非偶函数。
已知f(x)为奇函数,g(x)为偶函数,且两者的定义域相同,判断f(x)+g(x)的奇偶性。
解:由题意知f(x)=–f(–x),g(x)=g(–x),令h(x)=f(x)+g(x),则h(x)的定义域关于原点对称。
h(–x)=f(–x)+g(–x),而h(x)不等于h(–x),–h(–x)=–f(–x)–g(–x),即h(x)不等于–h(–x),因此h(x)为非奇非偶函数。
奇函数加奇函数是什么函数
奇函数加减奇函数是奇函数,偶函数加减偶函数是偶函数,奇函数乘奇函数是偶函数,偶函数乘偶函数是偶函数,奇函数乘偶函数是奇函数。
常用运算方法
奇函数±奇函数=奇函数
偶函数±偶函数=偶函数
奇函数×奇函数=偶函数
偶函数×偶函数=偶函数
奇函数×偶函数=奇函数
公式推导
设f(x),g(x)为奇函数,t(x)=f(x)+g(x),t(-x)=f(-x)+g(-x)=-f(x)+(-g(x))=-t(x),所以奇函数加奇函数还是奇函数;
若f(x),g(x)为偶函数,t(x)=f(x)+g(x),t(-x)=f(-x)+g(-x)=f(x)+g(x)=t(x),所以偶函数加偶函数还是偶函数。
奇偶函数定义
奇函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
偶函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
奇函数加常数是什么函数
奇函数与常数(非0)相加减变为非奇非偶函数,偶函数与常数相加减还是偶函数。奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数(oddfunction)。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
奇函数偶函数是什么
一般地,对于函数f(x):
1、如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
2、如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
3、奇函数在其对称区间【a,b】和【-b,-a】上具有相同的单调性,即已知是奇函数,它在区间【a,b】上是增函数(减函数),则在区间【-b,-a】上也是增函数(减函数)。
4、偶函数在其对称区间【a,b】和【-b,-a】上具有相反的单调性,即已知是偶函数且在区间【a,b】上是增函数(减函数),则在区间【-b,-a】上是减函数(增函数)。
奇函数的图像关于什么对称
奇函数的图像关于原点对称,奇函数在x=0处有意义,奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x)。
两个奇函数相加所得的和或相减所得的差为奇函数,一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。
xcosx是奇函数吗
xcosx是奇函数。奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
奇函数的性质有:两个奇函数相加所得的和或相减所得的差为奇函数;一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数;两个奇函数相乘所得的积或相除所得的商为偶函数。